Shantanu's Blog
Database Consultant
May 05, 2024
Pandas as command prompt
You can use pandas at command prompt like this...
curl -s https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip | \
gunzip | \
python3 -c 'import sys, pandas as pd
pd.read_csv(sys.stdin).melt("Date").to_csv(sys.stdout, index=False)'
curl -s https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip | \
gunzip | \
python3 -c 'import sys, pandas as pd
pd.read_csv(sys.stdin).iloc[:, :-1].melt("Date")\
.to_csv(sys.stdout, index=False)'
Labels: pandas, shell script
July 21, 2023
langchain for pandas
langchain is a module to query pandas dataframe using Natural Language. It uses chatGPT to build pandas commands!
!pip install langchain
import os
os.environ["OPENAI_API_KEY"] = "XXXX"
from langchain.agents import create_pandas_dataframe_agent
from langchain.llms import OpenAI
import pandas as pd
pd_agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=True)
pd_agent.run("Find the total sales for each product line in the year 2003")
_____
Something similar...
# https://github.com/gventuri/pandas-ai
!pip install pandasai
from pandasai import SmartDataframe, SmartDatalake
from pandasai.llm import OpenAI
llm = OpenAI(api_token="YOUR TOKEN")
sdf = SmartDataframe(df, config={"llm": llm})
sdf.chat("Return the top 5 countries by GDP")
sdf.chat("Plot a chart of the gdp by country")
print(sdf.last_code_generated)
If you have more than one dataframe, then use SmartDatalake method and supply a list of dataframes. For e.g.
sdf = SmartDatalake([df, df2, df3], config={"llm": llm})
Labels: machine_learning, openai, pandas, usability
March 16, 2022
Interactive pandas dataframe
iTables is an important utility for pandas dataframe. It will make the df or series interactive.
https://github.com/mwouts/itables
Install the package with:
pip install itables
Activate the interactive mode:
from itables import init_notebook_mode
init_notebook_mode(all_interactive=True)
or use itables.show to show just one Series or DataFrame as an interactive table.
_____
1) At the moment itables does not have an offline mode. While the table data is embedded in the notebook, the jquery and datatables.net are loaded from a CDN.
2) When the data in a table is larger than maxBytes, which is equal to 64KB by default, itables will display only a subset of the table. To show the table in full, modify the value of maxBytes either locally:
show(df, maxBytes=0)
or globally:
import itables.options as opt
opt.maxBytes = 2 ** 20
Labels: pandas, python, usability
July 07, 2021
pandas case study 34
moving average for the variable length window
How do I calculate the moving average where the set of previous rows is not fixed? For e.g. this SQL query will calculate the average for the totalprice column for the last 1 month orders.
SELECT avg(totalprice) OVER (
PARTITION BY custkey
ORDER BY orderdate
RANGE BETWEEN interval '1' month PRECEDING AND CURRENT ROW)
FROM orders
I have this dataframe:
from io import StringIO
import pandas as pd
myst="""cust_1,2020-10-10,100
cust_2,2020-10-10,15
cust_1,2020-10-15,200
cust_1,2020-10-16,240
cust_2,2020-12-20,25
cust_1,2020-12-25,140
cust_2,2021-01-01,5
"""
u_cols=['custkey', 'orderdate', 'totalprice']
myf = StringIO(myst)
import pandas as pd
orders = pd.read_csv(StringIO(myst), sep=',', names = u_cols)
orders['orderdate'] = pd.to_datetime(orders['orderdate'])
df=df.sort_values(list(df.columns))
Answer:
orders['my_average'] = (orders.groupby('custkey')
.apply(lambda d: d.rolling('30D', on='orderdate')['totalprice'].mean())
.reset_index(level=0, drop=True)
.astype(int)
)
https://stackoverflow.com/questions/68268531/window-function-for-moving-average
Labels: pandas
May 18, 2021
Pandas case study 33
Let's assume we have 2 dataframes of english words.
The words may or may not be the same in both tables and the first dataframe has second column called "count". How do I merge these 2 dataframes and still get to know if a word is from first or second dataframe?
from io import StringIO
u_cols = ['word','count']
audit_trail = StringIO('''
test 1
testing 24
again 52
begin 6
''')
oscar = pd.read_csv(audit_trail, sep=" ", names = u_cols)
_____
from io import StringIO
u_cols = ['word' ]
audit_trail = StringIO('''
newer
age
computing
begin
''')
ptg = pd.read_csv(audit_trail, sep=" ", names = u_cols)
Use full outer join from merge method of pandas.
Do not forget to turn indicators on!
ndf=pd.merge(oscar,ptg,on="word", how="outer", indicator=True)
Labels: pandas
April 29, 2021
Manage your csv using clever csv
Command to analyze the csv file and let us know about delimiter/ escaping.
$ clevercsv detect ./imdb.csv
Detected: SimpleDialect(',', '', '\\')
We can import the csv in pandas dataframe without using read_csv method!
$ clevercsv explore -p imdb.csv
>>> df
The code to create pandas dataframe using clever csv
$ clevercsv code -p ./imdb.csv
import clevercsv
df = clevercsv.read_dataframe("./imdb.csv", delimiter=",", quotechar="", escapechar="\\")
If you are using Jupyter Notebook, use this code...
import clevercsv
rows = clevercsv.read_table('./imdb.csv')
df = clevercsv.read_dataframe('./imdb.csv')
Labels: pandas, usability
December 13, 2020
get elastic data into pandas dataframe
This 2 lines of code will conncet to Elastic instance hosted in Amazon cloud and download the data from a given index. It will save the data as pandas data frame and also flatten the JSON data to look like an excel spreadsheet.
import eland as ed
df = ed.DataFrame("https://xxx.us-east-1.es.amazonaws.com:443", es_index_pattern="cwl-2020.12.13")
Labels: elastic, pandas
September 18, 2020
Remove junk from pandas dataframe
Non-latin unicode characters in pandas dataframe are a big problem. Several hours are lost cleaning the data when some obscure characters are found in the dataframe imported from the csv or excel file. Here is an easy solution...
from unicodedata import normalize
def clean_normalize_whitespace(x):
if isinstance(x, str):
return normalize('NFKC', x).strip()
else:
return x
df_GDP = df_GDP.applymap(clean_normalize_whitespace)
#clean column headings as well
df_GDP.columns = df_GDP.columns.to_series().apply(clean_normalize_whitespace)
I have used NFKC parameter that stands for Normal Form Kompatibility Composition. The other one is NFKD (Decompostion) along with NFD as well as NFC.
https://unicode.org/reports/tr15/#Norm_Forms
Labels: pandas, unicode
July 13, 2020
Understanding your data
Pandas dataframe stores all the data into a single table that makes it difficult to understand the relationships between columns. For e.g. I will like to know how Area Abbreviation is related to Item code in the following data.
# Download the csv file from kaggle:
https://www.kaggle.com/dorbicycle/world-foodfeed-production
import pandas as pd
food_df = pd.read_csv('FAO.csv' , encoding='latin1')
food_df = food_df.drop(columns=food_df.columns[10:])
I will now import auto normalize class from featuretools. This will detect the internal relationships between columns and show us a nice graph.
from featuretools.autonormalize import autonormalize as an
entityset = an.auto_entityset(food_df)
entityset.plot()
Entities:
Element Code_Item Code_Area Code [Rows: 21477, Columns: 4]
Element Code [Rows: 2, Columns: 2]
Item Code [Rows: 117, Columns: 2]
Area Code [Rows: 174, Columns: 5]
Area Abbreviation [Rows: 169, Columns: 2]
Relationships:
Element Code_Item Code_Area Code.Area Code -> Area Code.Area Code
Element Code_Item Code_Area Code.Item Code -> Item Code.Item Code
Element Code_Item Code_Area Code.Element Code -> Element Code.Element Code
Area Code.Area Abbreviation -> Area Abbreviation.Area Abbreviation
Do not forget to check featuretools module as well. This will add new columns to your dataframe those can be useful in building machine learning module.
import featuretools as ft
fm, features = ft.dfs(entityset=entityset, target_entity='Element Code_Item Code_Area Code')
print (fm)
Labels: machine_learning, pandas, usability
May 01, 2020
Pandas case study 32
Handling Outliers
Outliers can be removed or adjusted using statistical methods of IQR, Z-Score and Data Smoothing.
1) For calculating IQR (Inter Quartile Range) of a dataset, first calculate it’s 1st Quartile(Q1) and 3rd Quartile(Q3) i.e. 25th and 75 percentile of the data and then subtract Q1 from Q3
import pandas as pd
data = [-2,8,13,19,34,49,50,53,59,64,87,89,1456]
df = pd.DataFrame(data)
df.columns = ['values']
ndf=df.describe().T
ndf['75%'] - ndf['25%']
# returns 45
For finding out the Outlier using IQR we have to define a multiplier which is 1.5 ideally that will decide how far below Q1 and above Q3 will be considered as an Outlier.
higher_limit = ndf['75%'] + 1.5 * 45
lower_limit = ndf['25%'] - 1.5 * 45
df[(df['values'] > higher_limit[0]) | (df['values'] < lower_limit[0])]
2) Z-Score tells how far a point is from the mean of dataset in terms of standard deviation. An absolute value of z score which is above 3 is considered as an outlier.
from scipy import stats
df['z_score']=stats.zscore(df['values'])
df[df['z_score'] > 3]
# returns values
z_score
12
1456
3.454979
3) Data smoothing is a process to adjust the spikes and peaks. If your current value if 13 and previous value is 8 and smoothing level is 0.6 then the smoothed value is 11 given by
13*0.6 + (1-0.6)*8
Pandas smoothing function (EWM) can be used to calculate the exponential weighted Moving Average at different alpha levels.
df['ewm_alpha_1']=df['values'].ewm(alpha=0.1).mean()
df['ewm_alpha_3']=df['values'].ewm(alpha=0.3).mean()
df['ewm_alpha_6']=df['values'].ewm(alpha=0.6).mean()
df
https://kanoki.org/2020/04/23/how-to-remove-outliers-in-python/
Labels: machine_learning, pandas
April 16, 2020
Download and unzip any file using python
Usually I download a file and extract using 2 linux commands like this...
! wget https://github.com/d6t/d6tstack/raw/master/test-data.zip
! unzip -o test-data.zip
But it can also be done using python code as shown below!
import urllib.request
import zipfile
cfg_fname_sample = "test-data.zip"
urllib.request.urlretrieve(
"https://github.com/d6t/d6tstack/raw/master/" + cfg_fname_sample, cfg_fname_sample
)
zip_ref = zipfile.ZipFile(cfg_fname_sample, "r")
zip_ref.extractall(".")
zip_ref.close()
Labels: pandas, python, usability
April 10, 2020
Numpy Basics
Some basic numpy methods everyone should be aware of.
import numpy as np
mylist = [[100, 2, 3], [4, 5786, 6]]
a = np.array(mylist)
a
np.ravel(a)
np.append(a, [2])
np.append(a, [10, 11, 12])
np.append(a, [""])
b = np.array([[400], [800]])
np.append(a, b, axis=1)
np.append(a, [[50, 60, 70]], axis=0)
np.insert(a, 2, [1, 2, 34])
a[:1]
a[0][2]
a.size
a.shape
np.where(a == 3)
np.sort(a, axis=1)
np.sort(a, axis=0)
a.tolist()
np.delete(a, 1, axis=0)
np.delete(a, 1, axis=1)
Labels: pandas, python
March 28, 2020
Pandas case study 31
How to create a json document from pandas dataframe
If my data looks like this, how do I create a document per user?
Name Sem Subject Grade
0 John Sem1 Mathematics A
1 Sara Sem1 Biology B
2 John Sem2 Biology A+
3 Sara Sem2 Mathematics B++
In this case, John and Sara are the two users who appear for 2 semisters. I need a nested json document for each user.
John's data will look like this...
{
"John": {
"Sem1": {
"Subject": "Mathematics",
"Grade": "A"
},
"Sem2": {
"Subject": "Biology",
"Grade": "A+"
}
}
}
Here is how to create the dataframe:
df = pd.DataFrame(
{
"Name": ["John", "Sara", "John", "Sara"],
"Sem": ["Sem1", "Sem1", "Sem2", "Sem2"],
"Subject": ["Mathematics", "Biology", "Biology", "Mathematics"],
"Grade": ["A", "B", "A+", "B++"],
}
)
This is obviously a groupby problem. But we also need to export it to dictionary. Dictionary comprehension will make sure to include all users in a single document.
ppdict = {
n: grp.loc[n].to_dict("index")
for n, grp in df.set_index(["Name", "Sem"]).groupby(level="Name")
}
In order to display the data correctly, use json module like this...
import json
print(json.dumps(ppdict, indent=2))
The output will look like this...
{
"John": {
"Sem1": {
"Subject": "Mathematics",
"Grade": "A"
},
"Sem2": {
"Subject": "Biology",
"Grade": "A+"
}
},
"Sara": {
"Sem1": {
"Subject": "Biology",
"Grade": "B"
},
"Sem2": {
"Subject": "Mathematics",
"Grade": "B++"
}
}
}
https://kanoki.org/2020/03/24/convert-pandas-dataframe-to-dictionary/
Labels: pandas
March 14, 2020
Pandas case study 30
Effective visualization in pandas in just 7 lines of code.
url = "https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD&bom=true&format=true&delimiter=%3B"
from urllib.request import urlretrieve
urlretrieve(url, "data.csv")
import pandas as pd
df = pd.read_csv("data.csv", delimiter=";", index_col="Date", parse_dates=True)
%matplotlib inline
df.resample("w").sum().plot()
# https://www.youtube.com/watch?v=_ZEWDGpM-vM&list=WL&index=98&t=23s
Labels: pandas
March 13, 2020
Visual pandas - bamboolib
bamboolib - a GUI for pandas dataframes. Stop googling pandas commands
1) Get your free 14 days trial key.
https://bamboolib.8080labs.com/
2) Install required python package:
pip install bamboolib
jupyter nbextension enable --py qgrid --sys-prefix
jupyter nbextension enable --py widgetsnbextension --sys-prefix
jupyter nbextension install --py bamboolib --sys-prefix
jupyter nbextension enable --py bamboolib --sys-prefix
3) Restart docker container:
4) Start exploring visual pandas!
import bamboolib as bam
import pandas as pd
df = pd.read_csv(bam.titanic_csv)
df
_____
import modules automatically when required!
pip install pyforest
conda install nodejs
python -m pyforest install_extensions
Restart docker container.
Labels: pandas, usability
February 29, 2020
Pandas case study 29
Is there a way to identify leading and trailing NAs in a pandas.DataFrame? Currently I do the following but it seems not straightforward:
df = pd.DataFrame(dict(a=[0.1, 0.2, 0.2],
b=[None, 0.1, None],
c=[0.1, None, 0.1])
lead_na = (df.isnull() == False).cumsum() == 0
trail_na = (df.iloc[::-1].isnull() == False).cumsum().iloc[::-1] == 0
trail_lead_nas = top_na | trail_na
Any ideas how this could be expressed more efficiently?
Answer:
df.ffill().isna() | df.bfill().isna()
https://stackoverflow.com/questions/59820159/identify-leading-and-trailing-nas-in-pandas-dataframe
Labels: pandas
Pandas case study 28
I am attempting to generate a dataframe (or series) based on another dataframe, selecting a different column from the first frame dependent on the row using another series. In the below simplified example, I want the frame1 values from 'a' for the first three rows, and 'b for the final two (the picked_values series).
frame1=pd.DataFrame(np.random.randn(10).reshape(5,2),index=range(5),columns=['a','b'])
picked_values=pd.Series(['a','a','a','b','b'])
Frame1
a b
0 0.283519 1.462209
1 -0.352342 1.254098
2 0.731701 0.236017
3 0.022217 -1.469342
4 0.386000 -0.706614
Trying to get to the series:
0 0.283519
1 -0.352342
2 0.731701
3 -1.469342
4 -0.706614
I was hoping values[picked_values] would work, but this ends up with five columns.
Answer:
pd.Series(frame1.lookup(picked_values.index,picked_values))
https://stackoverflow.com/questions/59898266/select-columns-in-a-dataframe-conditional-on-row
Labels: pandas
Pandas case study 27
I have a dataframe that looks like below.
dataframe1 =
In AA BB CC
0 10 1 0
1 11 2 3
2 10 6 0
3 9 1 0
4 10 3 1
5 1 2 0
now I want to create a dataframe that gives me the count of modes for each column, for column AA the count is 3 for mode 10, for columns CC the count is 4 for mode 0, but for BB there are two modes 1 and 2, so for BB I want the sum of counts for the modes. so for BB the count is 2+2=4, for mode 1 and 2.
Therefore the final dataframe that I want looks like below.
Columns Counts
AA 3
BB 4
CC 4
How to do it?
Answer:
You can compare columns with modes and count matches by sum:
df = pd.DataFrame({'Columns': df.columns,
'Val':[df[x].isin(df[x].mode()).sum() for x in df]})
print (df)
Columns Val
0 AA 3
1 BB 4
2 CC 4
https://stackoverflow.com/questions/59874756/counting-mode-occurrences-for-all-columns-in-a-dataframe
Labels: pandas
Pandas case study 26
I have a list of dictionaries, and I would like to obtain those that have the same value in a key:
my_list_of_dicts = [{
'id': 3,
'name': 'John'
},{
'id': 5,
'name': 'Peter'
},{
'id': 2,
'name': 'Peter'
},{
'id': 6,
'name': 'Mariah'
},{
'id': 7,
'name': 'John'
},{
'id': 1,
'name': 'Louis'
}
]
Answer:
df = pd.DataFrame(my_list_of_dicts)
df[df.name.isin(df[df.name.duplicated()]['name'])].to_json(orient='records')
https://stackoverflow.com/questions/59822973/keep-duplicates-by-key-in-a-list-of-dictionaries/60465827#60465827
Labels: pandas
Pandas case study 25
I have this dataframe that I need to re-format for report purpose.
df = pd.DataFrame(data = {'RecordID' : [1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5],
'DisplayLabel' : ['Source','Test','Value 1','Value 2','Value3','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2'],
'Value' : ['Web','Logic','S','I','Complete','Person','Voice','>20','P','Mail','OCR','A','I','Dictation','Understandable','S','I','Web','Logic','R','S']})
I am trying to "unmelt" though not exactly the source and test columns into new dataframe.
Answer 1: mask, pivot and join
mask = df['DisplayLabel'].str.contains('Value')
df2 = df[~mask].pivot(index='RecordID', columns='DisplayLabel', values='Value')
dfpiv = (
df[mask].rename(columns={'DisplayLabel':'Result'})
.set_index('RecordID')
.join(df2)
.reset_index()
)
Answer 2: set_index, unstack, then melt
df.set_index(['RecordID', 'DisplayLabel']).Value.unstack().reset_index() \
.melt(['RecordID', 'Source', 'Test'], var_name='Result', value_name='Value') \
.sort_values('RecordID').dropna(subset=['Value'])
https://stackoverflow.com/questions/59847074/unmelt-only-part-of-a-column-from-pandas-dataframe
Labels: pandas
Archives
June 2001
July 2001
January 2003
May 2003
September 2003
October 2003
December 2003
January 2004
February 2004
March 2004
April 2004
May 2004
June 2004
July 2004
August 2004
September 2004
October 2004
November 2004
December 2004
January 2005
February 2005
March 2005
April 2005
May 2005
June 2005
July 2005
August 2005
September 2005
October 2005
November 2005
December 2005
January 2006
February 2006
March 2006
April 2006
May 2006
June 2006
July 2006
August 2006
September 2006
October 2006
November 2006
December 2006
January 2007
February 2007
March 2007
April 2007
June 2007
July 2007
August 2007
September 2007
October 2007
November 2007
December 2007
January 2008
February 2008
March 2008
April 2008
July 2008
August 2008
September 2008
October 2008
November 2008
December 2008
January 2009
February 2009
March 2009
April 2009
May 2009
June 2009
July 2009
August 2009
September 2009
October 2009
November 2009
December 2009
January 2010
February 2010
March 2010
April 2010
May 2010
June 2010
July 2010
August 2010
September 2010
October 2010
November 2010
December 2010
January 2011
February 2011
March 2011
April 2011
May 2011
June 2011
July 2011
August 2011
September 2011
October 2011
November 2011
December 2011
January 2012
February 2012
March 2012
April 2012
May 2012
June 2012
July 2012
August 2012
October 2012
November 2012
December 2012
January 2013
February 2013
March 2013
April 2013
May 2013
June 2013
July 2013
September 2013
October 2013
January 2014
March 2014
April 2014
May 2014
July 2014
August 2014
September 2014
October 2014
November 2014
December 2014
January 2015
February 2015
March 2015
April 2015
May 2015
June 2015
July 2015
August 2015
September 2015
January 2016
February 2016
March 2016
April 2016
May 2016
June 2016
July 2016
August 2016
September 2016
October 2016
November 2016
December 2016
January 2017
February 2017
April 2017
May 2017
June 2017
July 2017
August 2017
September 2017
October 2017
November 2017
December 2017
February 2018
March 2018
April 2018
May 2018
June 2018
July 2018
August 2018
September 2018
October 2018
November 2018
December 2018
January 2019
February 2019
March 2019
April 2019
May 2019
July 2019
August 2019
September 2019
October 2019
November 2019
December 2019
January 2020
February 2020
March 2020
April 2020
May 2020
July 2020
August 2020
September 2020
October 2020
December 2020
January 2021
April 2021
May 2021
July 2021
September 2021
March 2022
October 2022
November 2022
March 2023
April 2023
July 2023
September 2023
October 2023
November 2023
April 2024
May 2024
June 2024
August 2024
September 2024
October 2024
November 2024
December 2024
January 2025
February 2025
April 2025
June 2025
July 2025
August 2025
