Shantanu's Blog

Corporate Consultant

May 04, 2012

 

Copy MySQL data to Google Big Query

Here is a script that will dump the data from mysql and upload it to google cloud. It will then import the data from cloud to Google BigQuery database.
#!/bin/sh
yester_day=`date '+%Y%m%d' --date="1 day ago"`
schema_name="miniLogArchives"
tbl_name="r_mini_raw_$yester_day"
raw_location="/mnt/$yester_day"
field_term="^"
file_prefix='may3'
# split 4 GB
split_bytes="4000000000"
# google bucket name
bucket_name='log_data'

mkdir $raw_location
cd $raw_location
time mysqldump $schema_name $tbl_name --tab=$raw_location --fields-terminated-by="$field_term"

# make sure input file is UTF-8 file
file $tbl_name.txt

# split files with prefix 
time split -C 4000000000 $tbl_name.txt $file_prefix

for file in `ls $file_prefix*`
do
# big query does not seem to like double quotes
time sed -i 's/\"//' $file
time gzip $file

# copy to google cloud and then import data to big query

time gsutil cp $file.gz gs://$bucket_name/
time bq --nosync load -F '^' --max_bad_record=30000 mycompany.raw_data gs://$bucket_name/$file.gz ip:string,cb:string,country:string,telco_name:string, ...

done

exit

# make sure that mysql has write permission to raw_location path /mnt/
# make sure the 2 utilities are installed from ...
# https://developers.google.com/storage/docs/gsutil_install#install
# http://code.google.com/p/google-bigquery-tools/downloads/list


Here is another shell script that will copy the current MySQL table to big-query.

time mysql -e"drop table if exists test.google_query"

time mysql vserv -e"create table test.google_query engine=MyISAM
SELECT s.zone_id AS zone_id, ...
WHERE ncyid = 3 AND s.date_time>='2012-07-01 00:00:00' AND s.date_time<='2012-07-02 23:59:59' "

time mysqldump test google_query --tab=/mnt/
time gzip /mnt/google_query.txt

time bq --nosync load  -F '\t' --max_bad_record=30000 --job_id summary_2012_07_09_to_2012_07_02  company.summary02 /mnt/google_query.txt.gz zone_id:string,requests:integer,total_revenue:float,...

time bq query "SELECT FROM company.summary02 WHERE date_time>='2012-07-01 00:00:00' AND date_time<='2012-07-02 23:59:59' GROUP BY continent, country"

// this tutorial shows how to integrate big-query results into google spreadsheet.

https://developers.google.com/apps-script/articles/bigquery_tutorial

// gsutil can be used with both, google cloud as well as aws s3 provided you have added the aws_key and aws_secret_key to ~/.boto file:
gsutil -m cp -R s3://from_aws/ gs://daily_log/

// gsutil supports multi-thread option while s3cmd supports sync option as shown below:
s3cmd sync local_dir s3://from_aws/

// create JSON schema from MySQL save it as summary.json
select CONCAT('{"name": "', COLUMN_NAME, '","type":"', IF(DATA_TYPE like "%int%", "INTEGER",IF(DATA_TYPE="decimal","FLOAT","STRING")) , '"},') as json from information_schema.columns where TABLE_SCHEMA = 'test' AND TABLE_NAME = 'summary'

mysqldump test summary --tab=.

time bq load --nosync -F '\t' --max_bad_record=30000 company.ox_banners ./ox_banners.txt ./ox_banners.json

_____

Here is the script that will copy the MySQL table to Big Query table

#!/bin/sh
BIG_QUERY_DB='company'
# change the big query db variables and then
# run the script with mysql DB and Table name for e.g.
# sh -xv query.sh asgs1a_vol_e6d65888 ox_data_archive_r_20120727

if [ $# -eq 0 ]
  then
    echo "DB and table name required"
exit 1
fi

TABLE_SCHEMA=$1
TABLE_NAME=$2

cat > json_query.txt << heredoc
select CONCAT('{"name": "', COLUMN_NAME, '","type":"', IF(DATA_TYPE like "%int%", "INTEGER",IF(DATA_TYPE="decimal","FLOAT","STRING")) , '"},') as json from information_schema.columns where TABLE_SCHEMA = '$TABLE_SCHEMA' AND TABLE_NAME = '$TABLE_NAME';
heredoc

echo '[' >  $TABLE_NAME.json
mysql -Bs < json_query.txt | sed '$s/,$//' >> $TABLE_NAME.json
echo ']' >>  $TABLE_NAME.json


mysqldump $TABLE_SCHEMA $TABLE_NAME --tab=.
time sed 's/\"//' $TABLE_NAME.txt | gzip -c > $TABLE_NAME.txt.gz

mytime=`date '+%y%m%d%H%M'`
time bq load --nosync -F '\t' --job_id="$TABLE_NAME$mytime" --max_bad_record=30000 $BIG_QUERY_DB.$TABLE_NAME $TABLE_NAME.txt.gz $TABLE_NAME.json

# download the script
wget http://mysqldump.googlecode.com/files/big_query.sh

# if required use dos2unix new_query.sh command to make it in linux format
# now dump and transfer the data from table mytable of company database
sh -xv big_query.sh company mytable

# If you need to process the text files, use the following scirpt
wget http://mysqldump.googlecode.com/files/final_big_query.sh
 _____

The following script will remove all the data from google cloud.
Use it with utmost care!

#!/bin/sh
for mybucket in `gsutil ls`
do
gsutil rm -R $mybucket > /dev/null
gsutil rb $mybucket
done

Script to remove all tables from big query

#!/bin/sh
# can add -r -f to rm command
# if you want to forcefully remove all tables
# datasetId from the command "bq ls"
datasetId=company

for mytable in `bq ls $datasetId`
do
bq rm $datasetId.$mytable
done

#You were warned

Labels: , ,


May 01, 2012

 

Setting the bucket policy for s3

By default the objects that are put into your bucket are not accessible by public.
But if you still want to have a Deny policy (for example for cases when an object has public-read in its ACL), the policy should look like:
{
    "Statement":[{
        "Effect":"Deny",
        "NotPrincipal": {
            "AWS":"XXXXAAAAYYYY"
        },
        "Action":"s3:*",
        "Resource":"arn:aws:s3:::ipdata/*"
   }]
}
 
Notice NotPrincipal element that excludes you (XXXXAAAAYYYY is your AWS account Id) from a deny statement. The resource with "bucket/*" relates to all objects inside the bucket, but not the bucket iteself.
The following policy would be wrong because it will lock out the owner as well.
{
  "Id": "Policy09210983",
  "Statement": [{
      "Sid": "Deny",
      "Action": "s3:*",
      "Effect": "Deny",
      "Resource": "arn:aws:s3:::bucketname",
      "Principal": {"AWS": [
          "*"
        ]}
    }]
}


Archives

June 2001   July 2001   January 2003   May 2003   September 2003   October 2003   December 2003   January 2004   February 2004   March 2004   April 2004   May 2004   June 2004   July 2004   August 2004   September 2004   October 2004   November 2004   December 2004   January 2005   February 2005   March 2005   April 2005   May 2005   June 2005   July 2005   August 2005   September 2005   October 2005   November 2005   December 2005   January 2006   February 2006   March 2006   April 2006   May 2006   June 2006   July 2006   August 2006   September 2006   October 2006   November 2006   December 2006   January 2007   February 2007   March 2007   April 2007   June 2007   July 2007   August 2007   September 2007   October 2007   November 2007   December 2007   January 2008   February 2008   March 2008   April 2008   July 2008   August 2008   September 2008   October 2008   November 2008   December 2008   January 2009   February 2009   March 2009   April 2009   May 2009   June 2009   July 2009   August 2009   September 2009   October 2009   November 2009   December 2009   January 2010   February 2010   March 2010   April 2010   May 2010   June 2010   July 2010   August 2010   September 2010   October 2010   November 2010   December 2010   January 2011   February 2011   March 2011   April 2011   May 2011   June 2011   July 2011   August 2011   September 2011   October 2011   November 2011   December 2011   January 2012   February 2012   March 2012   April 2012   May 2012   June 2012   July 2012   August 2012   October 2012   November 2012   December 2012   January 2013   February 2013   March 2013   April 2013   May 2013   June 2013   July 2013   September 2013   October 2013   January 2014   March 2014   April 2014   May 2014   July 2014   August 2014   September 2014   October 2014   November 2014   December 2014   January 2015   February 2015   March 2015   April 2015   May 2015   June 2015   July 2015   August 2015   September 2015   January 2016   February 2016   March 2016   April 2016   May 2016   June 2016   July 2016   August 2016   September 2016   October 2016   November 2016   December 2016   January 2017   February 2017   April 2017   May 2017  

This page is powered by Blogger. Isn't yours?