Shantanu's Blog

Database Consultant

September 29, 2019

 

Connect to DocumentDB from EC2 instance

Here are 4 easy steps to connect to documentDB cluster from any EC2 instance that is part of the same VPC.

1) Download key file:
cd /tmp/
wget https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem

2) Create mongo container:
docker run --name mymongo  -p 27017:27017 -v /tmp/:/tmp/ -d mongo:3.4

3) Login to mongo container:
docker exec -it mymongo bash

4) connect to documentDB cluster:
mongo --ssl --host docdb-XXX.us-east-1.docdb.amazonaws.com:27017 --sslCAFile /tmp/rds-combined-ca-bundle.pem --username abcd  --password xyz

Note that /tmp/ folder of host is mounted on container. All the files in that folder are available to "mymongo" container.
_____

You can set up an SSH tunnel to the Amazon DocumentDB cluster by running the following command on your local computer. The -L flag is used for forwarding a local port.

> ssh -i "ec2Access.pem" -L 27017:sample-cluster.cluster-xxx.us-east-1.docdb.amazonaws.com:27017 ubuntu@ec2-4-3-2-1.compute-1.amazonaws.com -N

After the SSH tunnel is created, any commands that you issue to localhost:27017 are forwarded to the Amazon DocumentDB cluster sample-cluster running in the Amazon VPC.

Make sure that TLS is disabled.

Now, use this command to connect to documentDB...

> mongo --sslAllowInvalidHostnames --ssl --sslCAFile rds-combined-ca-bundle.pem --username --password  

Labels: ,


August 23, 2019

 

managing mongoDB using documentDB cluster

Here are the commands to restore data to documentDB cluster.

# Restore from snapshot backup using AWS console and then query data using these commands:

cd /tmp/
wget https://s3.amazonaws.com/rds-downloads/rds-combined-ca-bundle.pem

docker run -v /tmp/:/tmp/ -it mongo
mongo --ssl --host docdb-2019-08-23-06-00-23.cluster-xxx.us-east-1.docdb.amazonaws.com:27017 --sslCAFile /tmp/rds-combined-ca-bundle.pem --username root --password xxxx

use some_db

db.some_table.findOne()
_____

# Download mongo backup file from S3 and restore to documentDB

aws s3 cp s3://bckup-67-60/backup_sept_2018/mp_201809.tar.gz .

tar xvf mp_201809.tar.gz

docker run -v /tmp/:/tmp/ -it mongo mongorestore --ssl --host docdb-2019-08-23-06-00-23.cluster-xxx.us-east-1.docdb.amazonaws.com:27017 --sslCAFile /tmp/rds-combined-ca-bundle.pem --username root --password xxx -d mp_201809 /tmp/mp_201809/

Labels: ,


February 03, 2017

 

Create an API in a few minutes

1) Create a table in dynamoDB with the name "ssc" and use field "seat_no" as a string primary key.
2) Add the records for the subjects by creating fields "English", "Maths" and adding marks as string "54", "32". The primary key can be something like "B54MH".

3) Create python function in Lambda as shown below:

import boto3
import json

client = boto3.resource('dynamodb')
table = client.Table('ssc')

def lambda_handler(event, context):
    item = {'seat_no': (event['seatno'])}
    r=table.get_item(Key=item)  
    return json.dumps(r)

4) Create an API
Link the above lambda function name for e.g. "ssc" to the API gateway.
It is important to correctly specify the mapping for API get method execution request:

{"seatno": "$input.params('seatno')"}
_____

Once deployed, the URL will look something like this...

https://9xd7zbdqjg.execute-api.us-east-1.amazonaws.com/S1?seatno=B54MH

Note we are using secure server https to connect. This makes it possible to consume the API results directly into an application like slack.

It is also possible to include cutom authorizer using the steps outlined here...

http://docs.aws.amazon.com/apigateway/latest/developerguide/use-custom-authorizer.html

Labels: , , , , ,


July 12, 2016

 

tokuDB (mongo) using docker

Here is the command that will initiate a toku container.

docker run -d -p 27017:27017 -v /tokudata:/data/db ankurcha/tokumx

(or use official image "mongo" instead of ankurcha/tokumx to install mongoDB without toku engine)
Now this toku installation is available through port 27017 from host IP that may be 172.17.0.1 and you can find it using ifconfig command.

The following python code will connect to the toku mongo container and add a record.

from pymongo import MongoClient
client = MongoClient('172.17.0.1:27017')
db = client.myFirstMB
db.countries.insert_one({"name" : "USA"})
for i in db.countries.find():
    print i

Since we have linked the data directory to /tokudata folder of the host machine, the data can be easily backed up.

Labels: ,


August 15, 2015

 

mongodb indexes

# add index
db.users.ensureIndex({"email":1})

# add composite index
db.users.ensureIndex({"email":1, "customer":1})

# add index on sub-document
db.users.ensureIndex({"email":1, "customer.address":1})

# add unique constraint
db.users.ensureIndex({"email":1, "customer.address":1}, {"unique":true})

# Remove duplicates
db.users.ensureIndex({"email":1, "customer.address":1}, {"unique":true, "dropDups":true})

# add sparse index that will return the record only if the field exists in the collection
db.users.ensureIndex({"email":1, "customer.address":1}, {"unique":true, "dropDups":true, "sparse":true})

# add full text index
db.users.ensureIndex({"email":1, "customer.address":1, "comment":text})

# add full text index on multiple fields
db.users.ensureIndex({"email":1, "customer.address":1, "comment":text, "customer.name":text})

# add weight to full text idnex
db.users.ensureIndex({"email":1, "customer.address":1, "comment":text, "customer.name":text}, {"weight":{"cusomter.name":2}})

# add full text index on all fields
db.users.ensureIndex({"email":1, "customer.address":1, "$**":text})


And here is how you can use the full text index in the query:

db.runCommand({"text":users, "search":"excellent post"})

By default it will search for "excellent" or "post". Use quotes to search using "and"

db.runCommand({"text":users, "search":"\"excellent post\""})

Labels: ,


 

manage mongo data using python

1) Here is how we can connect to mongodb and create a "db" object.

# connect to mongo test database
from pymongo import MongoClient
client = MongoClient()
db = client.test

2) Save dict data to mongodb test database, collection name: posts

y={"name": "amar", "age": 30}
db.posts.insert_one(y)

3) Get a sample record using findOne

db.posts.find_one()

4) copy the pandas dataframe to mongo

# assuming "df" is a dataframe that is alrady created

db.posts.insert_many(df.to_dict('records'))

If you get an error, you may need to correct the data using map function

df["region"] = df["region"].map(lambda x: str(x).split(':')[-1:])

This will remove the semicolon : from region column and select the last slice.

5) Import mongo data to pandas dataframe

# get all data from posts collection into a list of dicts
mylist=[]
for post in db.posts.find():
   mylist.append(post)

# convert the list to pandas dataframe
import pandas as pd
pd.DataFrame(mylist)


Labels: , , , ,


 

Mongo DB sharding tips

1) Sharding helps only if you have 3+ servers.
2) Choose shard key carefully, it can not be changed later.
3) All queries should use shard key.
4) Shard server can be started as replica sets. Take advantage of that.
5) Shard server should not be removed from the cluster. It does not offer the flexibility like replica set.

Here is a website that will convert any MySQL Queries to MongoDB Syntax:

http://www.querymongo.com/

Labels:


August 14, 2015

 

mongoDB mysql comparison cheat sheet

db.users.find({}, {})
select * from users
db.users.find({}, {“username”:1, “email”:1}}
select username, email from  users
db.users.find({}, {“username”:1, “email”:1}}.limit(10)
select username, email from  users limit 10
.limit()          .skip()                   .sort()
db.users.count()
select count(*) from users
db.runCommand(“distinct”: “users”, “key”: “age”})
select distinct(age) from users
db.users.find({“age”:{“$gte”:18, “$lte”:30}})
select * from users where age >= 18 and age <= 30
$lt      $gt     $lte    $get             $ne    $elemMatch
db.users.find({“ticket_no”:{“$in”:[75, 390]}})
select * from  users where ticket_no in (“75”, “390”)
$in     $nin             $not             $all
db.users.find({“$or”:[{“ticket_no”:{“$in”:[75, 390]}}, {“winner”:true}]})
select * from  users where ticket_no in (“75”, “390”) or winner is not null
$or     $and           $nor             $elemMatch
db.users.find({“age”:{“$in”:[null], “$exists”:true}})
select * from  users where age is null
db.users.find({“username”:/happy?/i})
select * from  users where username like ‘happy%’
perl compatible regular expressions
db.users.find({“ticket_no”:75})
select * from  users where ticket_no like ‘%75%’
[75, 390, 120, 450]
“75”, “390”, “120”, “450”
db.users.find({“ticket_no.2”:120})

db.users.find({“ticket_no”:{“$size”:4}})

db.users.findOne({criteria as above}, {“$slice”:[23, 10]}})
select * from users where age >= 18 and age <= 30 limit 23, 10
db.runCommand($getLastError”:1})

show warnings;
db.articles.aggregate("$project": {"author":1}}, {$group":{"_id":"$author", "count":{"$sum":1}}},
{"$sort": {"count": -1}}, {"$limit":5}
Select  author, count(*) as cnt from  articles group by author order by cnt desc limit 5
Aggregation results are limited to maximum response time of 16 MB
db.employees.aggregate( {"$project": {"totalPay" : {"$subtract" : [{"$add": ["$salary", "$bonus"]}, "$taxes"] } } } )
Select  (salary + bouns – taxes) as totalPay from  employees
$add  $subtract      $multiply  $divide   $mod
db.employees.aggregate( { "$project" : { "tenure" : {"$subtract" : [{"$year" : new Date()}, {"$year": "$hireDate"}] } } } )
select   year(now()) – year(hireDate) as tenure from employees
$year $month $week $dayOfMonth $dayOfWeek $dayOfYear  $hour  $minute  $second
db.employees.aggreage( { "$project": { "email" : { "$concat" : [ {"$substr" : [ "$firstName", 0, 1]}, ".", "$lastName", "@company.com" ] } } } )
select  concat(left(firstName, 1), “.”, lastName, “@company.com”) as email from employees
$substr   $concat  $toLower   $toUpper
db.sales.aggregate( { "$group": { "_id": "$country", "totalRevenue": { "$sum" : "$revenue" } } } )
select country, sum(revenue) from sales group by country
db.blog.aggregate({"$project": {"comments": "$comments"}}, {"$unwind" : "$comments"}, {"$match": {"comments.author" : "Akbar" }})

Labels: , , ,


August 08, 2015

 

mongo warnings at startup

When I log in to mongo shell, I see these warnings...

[root@az-215 ~]# mongo
MongoDB shell version: 3.0.3
connecting to: test
Server has startup warnings:
2015-05-20T13:04:19.010+0530 I CONTROL  [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/enabled is 'always'.
2015-05-20T13:04:19.010+0530 I CONTROL  [initandlisten] **        We suggest setting it to 'never'
2015-05-20T13:04:19.010+0530 I CONTROL  [initandlisten] ** WARNING: /sys/kernel/mm/transparent_hugepage/defrag is 'always'.
2015-05-20T13:04:19.010+0530 I CONTROL  [initandlisten] **        We suggest setting it to 'never'
2015-05-20T13:04:19.010+0530 I CONTROL  [initandlisten] ** WARNING: soft rlimits too low. rlimits set to 1024 processes, 65535 files. Number of processes should be at least 32767.5 : 0.5 times number of files.

$$$$ I need to edit these 2 files to change from "always" to "never"

# cat /sys/kernel/mm/transparent_hugepage/enabled
[always] madvise never

# cat /sys/kernel/mm/transparent_hugepage/defrag
[always] madvise never

And the soft limit of file descriptors is restricted to 1024 and that needs to be inreased for mongo to behave correctly.

cat /etc/security/limits.d/90-nproc.conf
# Default limit for number of user's processes to prevent
# accidental fork bombs.
# See rhbz #432903 for reasoning.

*          soft    nproc     1024
root       soft    nproc     unlimited

cp /etc/security/limits.d/90-nproc.conf /etc/security/limits.d/99-mongodb-nproc.conf

$$$ edit the new file 99-mongodb-nproc with higher soft limit.

Do not take these warnings lightly!

Labels:


August 07, 2015

 

mongodb essential commands

Here are the commands used for logging, statistics, administration and replica set. Each of these 4 sections have a few commands those will be useful for the system administrators.

##### logging

db.adminCommand({"setParameter":1, "logLevel":3})
# loglevels 0 to 5 defaults to 0
# like mysql general log

db.setProfilingLevel(1)
# 0-disable, 1 - log queries slower than 100 ms 2 - log everything
# like mysql slow query log

db.getProfilingLevel()
# current profile level

db.adminCommand({"diagLogging":2})
# captures data for diagnostic purposes
# 0-off, 1-writes, 2-reads, 3-both
# /data/db/dialog* | hexdump -c

##### stats

db.adminCommand({"serverStatus":1})["recordStats"]
# accesssNotInMemory if high, server overloaded

use local
db.startup_log.findOne()
# know how the server was started

user local
db.serverCmdLineOpts()
# how mongodb was started

db.foo.validate()
# deletedCount to know how many documents deleted

db.stats()
# database stats

db.collname.stats()
# collection stats

object.bsonsize({_id:ObjectId()})
db.eval("Object.bsonsize(db.foo.findOne())")
#size of a document


##### administration

db.runCommand({"compact":"collname"})
# compress database

db.runCommand({"dropIndexes":"foo", "index":"*"})
# drop all indexes

db.runCommand({"cloneCollection":"collname", "from": "shot:27017"})
# copy data from remote server

db.currentOp()
# show processlist equivalent

db.killOp(opid)
# kill process

db.adminCommand({"shutdown":1, "force":true})
# same as # use admin ## db.shutdownServer()
# same as kill -2 process_id


##### Replica set commands:

# start replica, add / remove server
rs.initiate()
rs.add({"_id":1, "host":"server:27017", "votes":0, "priority":0})
rs.remove("server:27017")
rs.stopSet()

# check status
db.printSlaveReplicationInfo()
rs.status()
rs.config()

# manage
rs.reconfig()
rs.reconfig(myconfig, {"force":true})
rs.stepDown()
rs.freeze(10000)
rs.setSlaveOk()

Labels:


July 29, 2015

 

Using map-reduce to count results returned

In some cases Mongodb does not allow you to count the results of certain queries because there are too many results returned and the server does not have enough memory to process all of them at once. In such cases you need to use map-reduce.

1) Write a map function that will create a numbered key for e.g. "count" for each record found.
2) Write a reducer function that will number all the "count" keys and give you the total.

In this example, I have 4 records in a collection called "abhishek".

> db.abhishek.find()
{ "_id" : ObjectId("55b8978ab14a658f6e173618"), "name" : "shantanu1" }
{ "_id" : ObjectId("55b8980bb14a658f6e173619"), "name" : "shantanu2" }
{ "_id" : ObjectId("55b898fbb14a658f6e17361b"), "name" : "shantanu3" }
{ "_id" : ObjectId("55b898feb14a658f6e17361c"), "name" : "shantanu4" }

I can easily see that there are 4 records in this collection. But I can get the same results using map-reduce as shown below:

map = function() {
for (var key in this) {
emit(key, {count: 1});
}};


reduce = function(key, emits) {
total = 0;
for (var i in emits) {
total += emits[i].count;
}
return {"count": total };
}

mr = db.runCommand({"mapreduce": "abhishek", "map": map, "reduce": reduce, "out": 'redcuedcalls1'})

> db[mr.result].find()
{ "_id" : "_id", "value" : { "count" : 4 } }
{ "_id" : "name", "value" : { "count" : 4 } }

You have to apply the same map-reduce logic to get the count of results returned from a query.

Labels: ,


May 19, 2014

 

unique key in mongodb

There is a function called "last_insert_id" in mysql that will return the auto incremented id of the record recently added. MongoDB by default returns the object ID of the last inserted record. Interesting :)

>>> import pymongo
>>> client=pymongo.MongoClient()
>>> db=client.mydb
>>> db.testData.insert({"x": 211, "phone":["27848226", "26788485"]})
ObjectId('537aec6da44d0b7348eb6a25')

Other useful commands:

# db.testData.find().limit(1).forEach(printjson)

# list(db.testData.find().limit(1))

# import pprint
# pprint.PrettyPrinter(some_text)

for i in db.testData.find():
    print (i)

Labels:


Archives

June 2001   July 2001   January 2003   May 2003   September 2003   October 2003   December 2003   January 2004   February 2004   March 2004   April 2004   May 2004   June 2004   July 2004   August 2004   September 2004   October 2004   November 2004   December 2004   January 2005   February 2005   March 2005   April 2005   May 2005   June 2005   July 2005   August 2005   September 2005   October 2005   November 2005   December 2005   January 2006   February 2006   March 2006   April 2006   May 2006   June 2006   July 2006   August 2006   September 2006   October 2006   November 2006   December 2006   January 2007   February 2007   March 2007   April 2007   June 2007   July 2007   August 2007   September 2007   October 2007   November 2007   December 2007   January 2008   February 2008   March 2008   April 2008   July 2008   August 2008   September 2008   October 2008   November 2008   December 2008   January 2009   February 2009   March 2009   April 2009   May 2009   June 2009   July 2009   August 2009   September 2009   October 2009   November 2009   December 2009   January 2010   February 2010   March 2010   April 2010   May 2010   June 2010   July 2010   August 2010   September 2010   October 2010   November 2010   December 2010   January 2011   February 2011   March 2011   April 2011   May 2011   June 2011   July 2011   August 2011   September 2011   October 2011   November 2011   December 2011   January 2012   February 2012   March 2012   April 2012   May 2012   June 2012   July 2012   August 2012   October 2012   November 2012   December 2012   January 2013   February 2013   March 2013   April 2013   May 2013   June 2013   July 2013   September 2013   October 2013   January 2014   March 2014   April 2014   May 2014   July 2014   August 2014   September 2014   October 2014   November 2014   December 2014   January 2015   February 2015   March 2015   April 2015   May 2015   June 2015   July 2015   August 2015   September 2015   January 2016   February 2016   March 2016   April 2016   May 2016   June 2016   July 2016   August 2016   September 2016   October 2016   November 2016   December 2016   January 2017   February 2017   April 2017   May 2017   June 2017   July 2017   August 2017   September 2017   October 2017   November 2017   December 2017   February 2018   March 2018   April 2018   May 2018   June 2018   July 2018   August 2018   September 2018   October 2018   November 2018   December 2018   January 2019   February 2019   March 2019   April 2019   May 2019   July 2019   August 2019   September 2019   October 2019   November 2019   December 2019   January 2020   February 2020   March 2020   April 2020   May 2020   July 2020   August 2020   September 2020   October 2020   December 2020   January 2021   April 2021   May 2021   July 2021   September 2021   March 2022   October 2022   November 2022   March 2023   April 2023   July 2023   September 2023   October 2023   November 2023   April 2024   May 2024   June 2024   August 2024   September 2024   October 2024   November 2024   December 2024   January 2025   February 2025   April 2025   June 2025   July 2025   August 2025  

This page is powered by Blogger. Isn't yours?